| 1 | #!/usr/bin/env python
|
|---|
| 2 | #
|
|---|
| 3 | # Author: Lan Huong Nguyen (lanhuong @stanford)
|
|---|
| 4 | # Copyright (c) 2012-2016 California Institute of Technology.
|
|---|
| 5 | # License: 3-clause BSD. The full license text is available at:
|
|---|
| 6 | # - http://mmckerns.github.io/project/mystic/browser/mystic/LICENSE
|
|---|
| 7 |
|
|---|
| 8 | debug = True #False
|
|---|
| 9 | MINMAX = -1 ## NOTE: sup = maximize = -1; inf = minimize = 1
|
|---|
| 10 | #######################################################################
|
|---|
| 11 | # scaling and mpi info; also optimizer configuration parameters
|
|---|
| 12 | # hard-wired: use DE solver, don't use mpi, F-F' calculation
|
|---|
| 13 | #######################################################################
|
|---|
| 14 | npop = 40
|
|---|
| 15 | maxiter = 6000
|
|---|
| 16 | maxfun = 1e+6
|
|---|
| 17 | crossover = 0.9
|
|---|
| 18 | percent_change = 0.9
|
|---|
| 19 | convergence_tol = 1e-6
|
|---|
| 20 | tolW = 0.05; tolP_range_fr = 0.05
|
|---|
| 21 | ngen = 200; ngcol = 200
|
|---|
| 22 |
|
|---|
| 23 |
|
|---|
| 24 | #######################################################################
|
|---|
| 25 | # the model function
|
|---|
| 26 | #######################################################################
|
|---|
| 27 | from surrogate import marc_surr as model0
|
|---|
| 28 |
|
|---|
| 29 | #######################################################################
|
|---|
| 30 | # the differential evolution optimizer
|
|---|
| 31 | #######################################################################
|
|---|
| 32 | def optimize(cost,_bounds,_constraints):
|
|---|
| 33 | from mystic.solvers import DifferentialEvolutionSolver2
|
|---|
| 34 | from mystic.strategy import Best1Exp
|
|---|
| 35 | from mystic.monitors import VerboseMonitor, Monitor
|
|---|
| 36 | from mystic.tools import random_seed
|
|---|
| 37 |
|
|---|
| 38 | random_seed(122)
|
|---|
| 39 |
|
|---|
| 40 | stepmon = VerboseMonitor(10,10)
|
|---|
| 41 | #stepmon = Monitor()
|
|---|
| 42 | evalmon = Monitor()
|
|---|
| 43 |
|
|---|
| 44 | lb,ub,npts = _bounds
|
|---|
| 45 | ndim = len(lb)
|
|---|
| 46 |
|
|---|
| 47 | solver = DifferentialEvolutionSolver2(ndim,npop)
|
|---|
| 48 | solver.SetRandomInitialPoints(min=lb,max=ub)
|
|---|
| 49 | solver.SetStrictRanges(min=lb,max=ub)
|
|---|
| 50 | solver.SetEvaluationLimits(maxiter,maxfun)
|
|---|
| 51 | solver.SetEvaluationMonitor(evalmon)
|
|---|
| 52 | solver.SetGenerationMonitor(stepmon)
|
|---|
| 53 | solver.SetConstraints(_constraints)
|
|---|
| 54 |
|
|---|
| 55 | import collapse_code
|
|---|
| 56 | return collapse_code.collapseSolver(solver, cost, npts, lb, ub, convergence_tol, tolW, \
|
|---|
| 57 | tolP_range_fr, ngen, ngcol, Best1Exp, crossover, \
|
|---|
| 58 | percent_change, stepmon, _constraints)
|
|---|
| 59 | #######################################################################
|
|---|
| 60 | # maximize the function
|
|---|
| 61 | #######################################################################
|
|---|
| 62 | def maximize(params,npts,bounds):
|
|---|
| 63 |
|
|---|
| 64 | from mystic.math.measures import split_param
|
|---|
| 65 | from mystic.math.discrete import product_measure
|
|---|
| 66 | from mystic.math import almostEqual
|
|---|
| 67 | from numpy import inf
|
|---|
| 68 | atol = 1e-18 # default is 1e-18
|
|---|
| 69 | rtol = 1e-7 # default is 1e-7
|
|---|
| 70 | target,error = params
|
|---|
| 71 | lb,ub = bounds
|
|---|
| 72 |
|
|---|
| 73 | # split lower & upper bounds into weight-only & sample-only
|
|---|
| 74 | w_lb, x_lb = split_param(lb, npts)
|
|---|
| 75 | w_ub, x_ub = split_param(ub, npts)
|
|---|
| 76 |
|
|---|
| 77 | # NOTE: rv, lb, ub are of the form:
|
|---|
| 78 | # rv = [wxi]*nx + [xi]*nx + [wyi]*ny + [yi]*ny + [wzi]*nz + [zi]*nz
|
|---|
| 79 |
|
|---|
| 80 | # generate primary constraints function
|
|---|
| 81 | def constraints(rv, cnstr_x=None):
|
|---|
| 82 | c = product_measure()
|
|---|
| 83 | c.load(rv, npts)
|
|---|
| 84 | # NOTE: bounds wi in [0,1] enforced by filtering
|
|---|
| 85 | # impose norm on each discrete measure
|
|---|
| 86 | for measure in c:
|
|---|
| 87 | if not almostEqual(float(measure.mass), 1.0, tol=atol, rel=rtol):
|
|---|
| 88 | measure.normalize()
|
|---|
| 89 | # impose expectation on product measure
|
|---|
| 90 | ##################### begin function-specific #####################
|
|---|
| 91 | E = float(c.expect(model))
|
|---|
| 92 | if not (E <= float(target[0] + error[0])) \
|
|---|
| 93 | or not (float(target[0] - error[0]) <= E):
|
|---|
| 94 | c.set_expect((target[0],error[0]), model, (x_lb,x_ub), cnstr_x)
|
|---|
| 95 | ###################### end function-specific ######################
|
|---|
| 96 | # extract weights and positions
|
|---|
| 97 | return c.flatten()
|
|---|
| 98 |
|
|---|
| 99 | # generate maximizing functio
|
|---|
| 100 | def cost(rv):
|
|---|
| 101 | c = product_measure()
|
|---|
| 102 | c.load(rv, npts)
|
|---|
| 103 | E = float(c.expect(model))
|
|---|
| 104 | if E > (target[0] + error[0]) or E < (target[0] - error[0]):
|
|---|
| 105 | if debug: print "skipping expect: %s" % E
|
|---|
| 106 | return inf #XXX: FORCE TO SATISFY E CONSTRAINTS
|
|---|
| 107 | return MINMAX * c.pof(model)
|
|---|
| 108 |
|
|---|
| 109 | # maximize
|
|---|
| 110 | solved, func_max, tot_evaluations, collapse_data = optimize(cost,(lb,ub,npts),constraints)
|
|---|
| 111 |
|
|---|
| 112 | if MINMAX == 1:
|
|---|
| 113 | print "func_minimum: %s" % func_max # inf
|
|---|
| 114 | else:
|
|---|
| 115 | print "func_maximum: %s" % func_max # sup
|
|---|
| 116 | print "tot_evaluations: %s" % tot_evaluations
|
|---|
| 117 |
|
|---|
| 118 | return solved, func_max, collapse_data
|
|---|
| 119 |
|
|---|
| 120 |
|
|---|
| 121 | #######################################################################
|
|---|
| 122 | # rank, bounds, and restart information
|
|---|
| 123 | #######################################################################
|
|---|
| 124 | if __name__ == '__main__':
|
|---|
| 125 | from time import clock
|
|---|
| 126 | start = clock()
|
|---|
| 127 |
|
|---|
| 128 | from mystic.tools import wrap_function
|
|---|
| 129 | from mystic.monitors import Null
|
|---|
| 130 | fmon = Null()
|
|---|
| 131 | model_evaluations, model = wrap_function(model0, [], fmon)
|
|---|
| 132 | function_name = model0.__name__
|
|---|
| 133 |
|
|---|
| 134 | H_mean = 6.5 #NOTE: SET THE 'mean' HERE!
|
|---|
| 135 | H_range = 1.0 #NOTE: SET THE 'range' HERE!
|
|---|
| 136 | nx = 3 #NOTE: SET THE NUMBER OF 'h' POINTS HERE!
|
|---|
| 137 | ny = 3 #NOTE: SET THE NUMBER OF 'a' POINTS HERE!
|
|---|
| 138 | nz = 3 #NOTE: SET THE NUMBER OF 'v' POINTS HERE!
|
|---|
| 139 | target = (H_mean,)
|
|---|
| 140 | error = (H_range,)
|
|---|
| 141 |
|
|---|
| 142 | w_lower = [0.0]
|
|---|
| 143 | w_upper = [1.0]
|
|---|
| 144 | h_lower = [60.0]; a_lower = [0.0]; v_lower = [2.1]
|
|---|
| 145 | h_upper = [105.0]; a_upper = [30.0]; v_upper = [2.8]
|
|---|
| 146 |
|
|---|
| 147 | lower_bounds = (nx * w_lower) + (nx * h_lower) \
|
|---|
| 148 | + (ny * w_lower) + (ny * a_lower) \
|
|---|
| 149 | + (nz * w_lower) + (nz * v_lower)
|
|---|
| 150 | upper_bounds = (nx * w_upper) + (nx * h_upper) \
|
|---|
| 151 | + (ny * w_upper) + (ny * a_upper) \
|
|---|
| 152 | + (nz * w_upper) + (nz * v_upper)
|
|---|
| 153 |
|
|---|
| 154 | print "...SETTINGS..."
|
|---|
| 155 | print "npop = %s" % npop
|
|---|
| 156 | print "ngen = %s" %ngen
|
|---|
| 157 | print "ngcol = %s" %ngcol
|
|---|
| 158 | print "maxiter = %s" % maxiter
|
|---|
| 159 | print "maxfun = %s" % maxfun
|
|---|
| 160 | print "convergence_tol = %s" % convergence_tol
|
|---|
| 161 | print "crossover = %s" % crossover
|
|---|
| 162 | print "percent_change = %s" % percent_change
|
|---|
| 163 | print "..............\n"
|
|---|
| 164 |
|
|---|
| 165 | print " model: f(x) = %s(x)" % function_name
|
|---|
| 166 | print " target: %s" % str(target)
|
|---|
| 167 | print " error: %s" % str(error)
|
|---|
| 168 | print "..............\n"
|
|---|
| 169 |
|
|---|
| 170 | param_string = "["
|
|---|
| 171 | for i in range(nx):
|
|---|
| 172 | param_string += "'wx%s', " % str(i+1)
|
|---|
| 173 | for i in range(nx):
|
|---|
| 174 | param_string += "'x%s', " % str(i+1)
|
|---|
| 175 | for i in range(ny):
|
|---|
| 176 | param_string += "'wy%s', " % str(i+1)
|
|---|
| 177 | for i in range(ny):
|
|---|
| 178 | param_string += "'y%s', " % str(i+1)
|
|---|
| 179 | for i in range(nz):
|
|---|
| 180 | param_string += "'wz%s', " % str(i+1)
|
|---|
| 181 | for i in range(nz):
|
|---|
| 182 | param_string += "'z%s', " % str(i+1)
|
|---|
| 183 | param_string = param_string[:-2] + "]"
|
|---|
| 184 |
|
|---|
| 185 | print " parameters: %s" % param_string
|
|---|
| 186 | print " lower bounds: %s" % lower_bounds
|
|---|
| 187 | print " upper bounds: %s" % upper_bounds
|
|---|
| 188 | # print " ..."
|
|---|
| 189 | pars = (target,error)
|
|---|
| 190 | npts = (nx,ny,nz)
|
|---|
| 191 | bounds = (lower_bounds,upper_bounds)
|
|---|
| 192 | solved, diameter, collapse_data = maximize(pars,npts,bounds)
|
|---|
| 193 |
|
|---|
| 194 | from numpy import array
|
|---|
| 195 | from mystic.math.discrete import product_measure
|
|---|
| 196 | c = product_measure()
|
|---|
| 197 | c.load(solved,npts)
|
|---|
| 198 | print "solved: [wx,x]\n%s" % array(zip(c[0].weights,c[0].positions))
|
|---|
| 199 | print "solved: [wy,y]\n%s" % array(zip(c[1].weights,c[1].positions))
|
|---|
| 200 | print "solved: [wz,z]\n%s" % array(zip(c[2].weights,c[2].positions))
|
|---|
| 201 |
|
|---|
| 202 | print "expect: %s" % str( c.expect(model) )
|
|---|
| 203 |
|
|---|
| 204 | elapsed = (clock() - start)
|
|---|
| 205 |
|
|---|
| 206 | print "########################"
|
|---|
| 207 | print 'RUNTIME = %s' %elapsed
|
|---|
| 208 | print 'COLLAPSE DATA= %s' %collapse_data
|
|---|
| 209 | print 'MODEL Evaluations = %s' %model_evaluations
|
|---|
| 210 | # EOF
|
|---|