1 | #!/usr/bin/env python |
---|
2 | # |
---|
3 | # Author: Lan Huong Nguyen (lanhuong @stanford) |
---|
4 | # Copyright (c) 2012-2016 California Institute of Technology. |
---|
5 | # License: 3-clause BSD. The full license text is available at: |
---|
6 | # - http://mmckerns.github.io/project/mystic/browser/mystic/LICENSE |
---|
7 | |
---|
8 | debug = False #True |
---|
9 | |
---|
10 | def CLPS_Weight(npts, tol_weight=0.05, generations=200, axisW = '', \ |
---|
11 | indexW = ''): |
---|
12 | """ Termination condition for vanishing weights. |
---|
13 | if info = False: |
---|
14 | returns true if the weight for any points collapsed |
---|
15 | if info = True: |
---|
16 | prints out a message saying for which points the weight vanished |
---|
17 | |
---|
18 | In this code, weight collapse is the event where the weight of a support |
---|
19 | point (its maximum accros last given number of generations) has been |
---|
20 | less than or equal to the tollerance level, tol_weight. |
---|
21 | |
---|
22 | If axisW and index are not declared, the function returns whenever weight |
---|
23 | has vanished for any point. If declared (axisW and index are tuple or |
---|
24 | integer objects) then the function returns only if collapse had occured f |
---|
25 | or points with given indices. Note that neither or both axisW and indexW |
---|
26 | must be declared, otherwise an error is printed. |
---|
27 | |
---|
28 | npts = (nx, ny, ...) is the tuple of the support point numbers for each |
---|
29 | input.""" |
---|
30 | # from mystic.tools import isNull |
---|
31 | from mystic.monitors import Null, Monitor, VerboseMonitor |
---|
32 | monitor = Monitor() |
---|
33 | if debug: monitor = VerboseMonitor(2, 2) |
---|
34 | |
---|
35 | |
---|
36 | def _CLPS_Weight(inst, info=False): |
---|
37 | ###FIXME: this should probably be in Solver ####### |
---|
38 | # if isNull(inst._stepmon): inst._stepmon = monitor |
---|
39 | ################################################### |
---|
40 | |
---|
41 | ######################## TO BE DELETED################################## |
---|
42 | #print "HERE I AM and the last 10 best solutions are: " |
---|
43 | #print inst._stepmon.x[-10:] |
---|
44 | ######################################################################## |
---|
45 | |
---|
46 | ############## PARAMETERS (length, and number of emasures) ############# |
---|
47 | hist_lg = len(inst._stepmon.x) |
---|
48 | if hist_lg <= generations: return False |
---|
49 | |
---|
50 | from mystic.math.measures import _nested_split |
---|
51 | w_bestSolution, x_bestSolution = \ |
---|
52 | _nested_split(inst.bestSolution, npts) |
---|
53 | ######################################################################## |
---|
54 | collapseWeight_msg = '' |
---|
55 | |
---|
56 | if isinstance(axisW, int) and isinstance(indexW, int): |
---|
57 | max_weight = 0 |
---|
58 | for n in range(-generations, 0): |
---|
59 | weights, positions = _nested_split(inst._stepmon.x[n], npts) |
---|
60 | if max_weight < weights[axisW][indexW]: |
---|
61 | max_weight = weights[axisW][indexW] |
---|
62 | if max_weight <= tol_weight: |
---|
63 | collapseWeight_msg += 'measure: %s & index: %s, ' \ |
---|
64 | %(axisW,indexW) |
---|
65 | |
---|
66 | elif isinstance(axisW, tuple) and isinstance(indexW, int): |
---|
67 | max_weight = [0]*len(axisW) |
---|
68 | |
---|
69 | for n in range(-generations, 0): |
---|
70 | weights, positions = _nested_split(inst._stepmon.x[n], npts) |
---|
71 | for i in range(len(max_weight)): |
---|
72 | if max_weight[i] < weights[axisW[i]][indexW]: |
---|
73 | max_weight[i] = weights[axisW[i]][indexW] |
---|
74 | for k in range(len(max_weight)): |
---|
75 | if max_weight[k] <= tol_weight: |
---|
76 | collapseWeight_msg += 'measure: %s & index: %s, ' \ |
---|
77 | %(axisW[k],indexW) |
---|
78 | |
---|
79 | elif isinstance(axisW, int) and isinstance(indexW, tuple): |
---|
80 | max_weight = [0]*len(indexW) |
---|
81 | |
---|
82 | for n in range(-generations, 0): |
---|
83 | weights, positions = _nested_split(inst._stepmon.x[n], npts) |
---|
84 | for i in range(len(max_weight)): |
---|
85 | if max_weight[i] < weights[axisW][indexW[i]]: |
---|
86 | max_weight[i] = weights[axisW][indexW[i]] |
---|
87 | for k in range(len(max_weight)): |
---|
88 | if max_weight[k] <= tol_weight: |
---|
89 | collapseWeight_msg += 'measure: %s & index: %s, ' \ |
---|
90 | %(axisW,indexW[k]) |
---|
91 | |
---|
92 | elif (isinstance(axisW, tuple) and isinstance(indexW, tuple)) or \ |
---|
93 | (axisW == '' and indexW == ''): #Note that can't change to not axisW |
---|
94 | # and not indexW since those can be zero indices |
---|
95 | if (axisW == '' and indexW == ''): |
---|
96 | max_weight = [[0] * nx for nx in npts] |
---|
97 | else: |
---|
98 | max_weight = [[0]*len(axisW)]*len(indexW) |
---|
99 | |
---|
100 | for n in range(-generations, 0): |
---|
101 | weights, positions = _nested_split(inst._stepmon.x[n], npts) |
---|
102 | |
---|
103 | for i in range(len(max_weight)): |
---|
104 | for j in range(len(max_weight[i])): |
---|
105 | if (axisW =='' and indexW == ''): |
---|
106 | if max_weight[i][j] < weights[i][j]: |
---|
107 | max_weight[i][j] = weights[i][j] |
---|
108 | else: |
---|
109 | if max_weight[i][j] < weights[axisW[i]][index[j]]: |
---|
110 | max_weight[i][j] = weights[axisW[i]][index[j]] |
---|
111 | |
---|
112 | for k in range(len(max_weight)): |
---|
113 | for l in range(len(max_weight[k])): |
---|
114 | if max_weight[k][l] <= tol_weight: |
---|
115 | if (axisW == '' and indexW == ''): |
---|
116 | collapseWeight_msg += 'measure: %s & index: %s, ' \ |
---|
117 | %(k,l) |
---|
118 | else: |
---|
119 | collapseWeight_msg += 'measure: %s & index: %s, ' \ |
---|
120 | %(axisW[k],indexW[l]) |
---|
121 | |
---|
122 | else: |
---|
123 | print 'Error, wrong arguments of CLPS_Weight' |
---|
124 | return False |
---|
125 | |
---|
126 | if info: |
---|
127 | if collapseWeight_msg == '': msg = '' |
---|
128 | else: |
---|
129 | msg0 = 'CLPS_Weight with: ' |
---|
130 | msg = msg0 + collapseWeight_msg |
---|
131 | msg2 = msg0 + '\n npts = %s, tol_weight = %s, generations = %s: \n' \ |
---|
132 | % (npts, tol_weight, generations) |
---|
133 | msg2 += 'vanishing weights of support points: ' |
---|
134 | msg2 += collapseWeight_msg |
---|
135 | if debug: print msg2 |
---|
136 | return msg |
---|
137 | |
---|
138 | if collapseWeight_msg == '': return False |
---|
139 | else: return True |
---|
140 | |
---|
141 | return _CLPS_Weight |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | def CLPS_Position(npts, tol_position, generations=200, axisP = '', \ |
---|
146 | index1 = '', index2 = ''): |
---|
147 | |
---|
148 | """ Termination condition for collapsing positions of support points. |
---|
149 | if info = False: |
---|
150 | returns true if the positions collapse for any 2 support |
---|
151 | points in a measure |
---|
152 | if info = True: |
---|
153 | prints out a message saying for which point-pairs the location collapsed. |
---|
154 | |
---|
155 | In this code, collapse is the event where the distance between 2 support |
---|
156 | points (its maximum accros last given number of generations) has been |
---|
157 | less than the tollerance level, tol_position. |
---|
158 | |
---|
159 | If axisP and index1 and index2 are not declared, the function returns |
---|
160 | whenever any 2 points collapse in position. If declared (axisP is a tuple |
---|
161 | or and integer, index1 and index2 are integers) then the function returns |
---|
162 | only if collapse had occured for points with given indices. |
---|
163 | |
---|
164 | npts = (nx, ny, ...) is the tuple of the support point numbers for each |
---|
165 | input.""" |
---|
166 | |
---|
167 | from mystic.tools import isNull |
---|
168 | from mystic.monitors import Null, Monitor, VerboseMonitor |
---|
169 | monitor = Monitor() |
---|
170 | if debug: monitor = VerboseMonitor(2, 2) |
---|
171 | |
---|
172 | # CHECK THAT index1, and index2 are integers if declared, and either none or |
---|
173 | # both are empty |
---|
174 | |
---|
175 | def _CLPS_Position(inst, info=False): |
---|
176 | ###FIXME: this should probably be in Solver ####### |
---|
177 | if isNull(inst._stepmon): inst._stepmon = monitor |
---|
178 | ################################################### |
---|
179 | |
---|
180 | ############## PARAMETERS (length, and number of emasures) ############# |
---|
181 | hist_lg = len(inst._stepmon) |
---|
182 | if hist_lg <= generations: return False |
---|
183 | |
---|
184 | from mystic.math.measures import _nested_split |
---|
185 | w_bestSolution, x_bestSolution = \ |
---|
186 | _nested_split(inst.bestSolution, npts) |
---|
187 | |
---|
188 | if axisP == '': |
---|
189 | dim = len(w_bestSolution) # Number of measures |
---|
190 | axis = range(dim) |
---|
191 | else: |
---|
192 | axis = axisP |
---|
193 | if isinstance( axisP, int ): dim = 1 |
---|
194 | else: dim = len(list(axisP)) |
---|
195 | |
---|
196 | ######################################################################## |
---|
197 | collapsePairs_msg = '' |
---|
198 | |
---|
199 | from numpy import array, zeros, ones, transpose |
---|
200 | for i in range(dim): |
---|
201 | if isinstance(axis, int): ax_idx = axis |
---|
202 | else: ax_idx = axis[i] |
---|
203 | |
---|
204 | if isinstance(index1, int): |
---|
205 | if isinstance(index2, int): |
---|
206 | nx = 1 |
---|
207 | max_measure_diffLoc = 0 |
---|
208 | else: |
---|
209 | print "Error argument declaration index2 is \ |
---|
210 | empty while index1 is not" |
---|
211 | return False #FIXME |
---|
212 | else: |
---|
213 | if isinstance(index2, int): |
---|
214 | print "Error argument declaration index1 is \ |
---|
215 | empty while index2 is not" |
---|
216 | return False #FIXME |
---|
217 | else: |
---|
218 | nx = npts[ax_idx] |
---|
219 | max_measure_diffLoc = zeros((nx, nx)) |
---|
220 | |
---|
221 | for n in range(-generations, 0): |
---|
222 | weights, positions = _nested_split(inst._stepmon.x[n], npts) |
---|
223 | if nx == 1: |
---|
224 | diffLoc = abs(positions[ax_idx][index1] - \ |
---|
225 | positions[ax_idx][index2]) |
---|
226 | if max_measure_diffLoc < diffLoc: |
---|
227 | max_measure_diffLoc= diffLoc |
---|
228 | else: |
---|
229 | diffLoc = abs(transpose(positions[ax_idx]*ones((nx, nx))) - \ |
---|
230 | positions[ax_idx]*ones((nx, nx))) |
---|
231 | for k in range(nx): |
---|
232 | for l in range(nx): |
---|
233 | if max_measure_diffLoc[(k, l)] < diffLoc[(k, l)]: |
---|
234 | max_measure_diffLoc[(k, l)] = diffLoc[(k, l)] |
---|
235 | |
---|
236 | if nx ==1 and max_measure_diffLoc <= tol_position[ax_idx]: |
---|
237 | collapsePairs_msg += ('measure: %s & indices: (%s,%s),'\ |
---|
238 | %(ax_idx,index1,index2)) |
---|
239 | |
---|
240 | else: |
---|
241 | for k in range(nx): |
---|
242 | for l in range(k,nx): |
---|
243 | if k != l and max_measure_diffLoc[(k,l)] <= \ |
---|
244 | tol_position[ax_idx]: |
---|
245 | collapsePairs_msg += ('measure: %s & indices: (%s,%s),' \ |
---|
246 | %(ax_idx,k,l)) |
---|
247 | |
---|
248 | if info: |
---|
249 | if collapsePairs_msg == '': msg = '' |
---|
250 | else: |
---|
251 | msg0 = 'CLPS_Position with: ' |
---|
252 | msg = msg0 + collapsePairs_msg |
---|
253 | msg2 = msg0 + '\n npts = %s, tol_position = %s, generations = %s:\n' \ |
---|
254 | % (npts, tol_position, generations) |
---|
255 | msg2 += 'collapse of support points: ' |
---|
256 | msg2 += collapsePairs_msg |
---|
257 | if debug: print msg2 |
---|
258 | return msg |
---|
259 | |
---|
260 | if collapsePairs_msg == '': return False |
---|
261 | else: return True |
---|
262 | |
---|
263 | return _CLPS_Position |
---|
264 | |
---|
265 | |
---|