| 1 | #!/usr/bin/env python |
|---|
| 2 | # |
|---|
| 3 | # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) |
|---|
| 4 | # Copyright (c) 2009-2016 California Institute of Technology. |
|---|
| 5 | # License: 3-clause BSD. The full license text is available at: |
|---|
| 6 | # - http://mmckerns.github.io/project/mystic/browser/mystic/LICENSE |
|---|
| 7 | |
|---|
| 8 | """Original matlab code: |
|---|
| 9 | |
|---|
| 10 | function A=marc_surr(x) |
|---|
| 11 | h=x(1)*25.4*10^(-3); |
|---|
| 12 | a=x(2)*pi/180; |
|---|
| 13 | v=x(3); |
|---|
| 14 | Ho=0.5794; |
|---|
| 15 | s=1.4004; |
|---|
| 16 | n=0.4482; |
|---|
| 17 | K=10.3963; |
|---|
| 18 | p=0.4757; |
|---|
| 19 | u=1.0275; |
|---|
| 20 | m=0.4682; |
|---|
| 21 | Dp=1.778; |
|---|
| 22 | |
|---|
| 23 | v_bl=Ho*(h/(cos(a))^(n))^s; |
|---|
| 24 | |
|---|
| 25 | if v<v_bl |
|---|
| 26 | A=0 |
|---|
| 27 | else |
|---|
| 28 | A=K*((h/Dp)^p)*((cos(a))^u)*(tanh((v/v_bl)-1))^m; |
|---|
| 29 | end |
|---|
| 30 | """ |
|---|
| 31 | |
|---|
| 32 | ### NOTES ### |
|---|
| 33 | # h = thickness = [60,105] |
|---|
| 34 | # a = obliquity = [0,30] |
|---|
| 35 | # v = speed = [2.1,2.8] |
|---|
| 36 | |
|---|
| 37 | # explore the cuboid (h,a,v), with |
|---|
| 38 | # subdivisions at h=100, a=20, v=2.2 |
|---|
| 39 | # due to ballistic limit: v(h=100,a=20) = 2.22, |
|---|
| 40 | # perforation in this region should be zero. |
|---|
| 41 | # NOTE: 'failure' is A < = t |
|---|
| 42 | # |
|---|
| 43 | # Calculate for each of the 8 subcuboids: |
|---|
| 44 | # * probability mass, i.e. the product of the normalized side-lengths, |
|---|
| 45 | # since we're taking h, a and v to be uniformly distributed in their |
|---|
| 46 | # intervals |
|---|
| 47 | # * McDiarmid diameter of the perforation area A when restricted to that |
|---|
| 48 | # cuboid or subcuboid |
|---|
| 49 | # * the mean value of the perforation area A on each (sub)cuboid |
|---|
| 50 | |
|---|
| 51 | from math import pi, cos, tanh |
|---|
| 52 | |
|---|
| 53 | def ballistic_limit(h,a): |
|---|
| 54 | """calculate ballistic limit |
|---|
| 55 | |
|---|
| 56 | Inputs: |
|---|
| 57 | - h = thickness in (unknown) units |
|---|
| 58 | - a = obliquity in (unknown) units |
|---|
| 59 | |
|---|
| 60 | Outputs: |
|---|
| 61 | - v_bl = velocity (ballistic limit) in (unknown) units |
|---|
| 62 | """ |
|---|
| 63 | #h = x[0] * 25.4 * 1e-3 |
|---|
| 64 | #a = x[1] * pi/180.0 |
|---|
| 65 | Ho = 0.5794 |
|---|
| 66 | s = 1.4004 |
|---|
| 67 | n = 0.4482 |
|---|
| 68 | return Ho * ( h / cos(a)**n )**s |
|---|
| 69 | |
|---|
| 70 | |
|---|
| 71 | def marc_surr(x): |
|---|
| 72 | """calculate perforation area using a tanh-based model surrogate |
|---|
| 73 | |
|---|
| 74 | Inputs: |
|---|
| 75 | - x = [thickness, obliquity, speed] in (unknown) units |
|---|
| 76 | |
|---|
| 77 | Outputs: |
|---|
| 78 | - A = performation area in (unknown) units |
|---|
| 79 | """ |
|---|
| 80 | # h = thickness = [60,105] |
|---|
| 81 | # a = obliquity = [0,30] |
|---|
| 82 | # v = speed = [2.1,2.8] |
|---|
| 83 | h = x[0] * 25.4 * 1e-3 |
|---|
| 84 | a = x[1] * pi/180.0 |
|---|
| 85 | v = x[2] |
|---|
| 86 | |
|---|
| 87 | K = 10.3963 |
|---|
| 88 | p = 0.4757 |
|---|
| 89 | u = 1.0275 |
|---|
| 90 | m = 0.4682 |
|---|
| 91 | Dp = 1.778 |
|---|
| 92 | |
|---|
| 93 | # compare to ballistic limit |
|---|
| 94 | v_bl = ballistic_limit(h,a) |
|---|
| 95 | if v < v_bl: |
|---|
| 96 | return 0 |
|---|
| 97 | |
|---|
| 98 | return K * (h/Dp)**p * (cos(a))**u * (tanh((v/v_bl)-1))**m |
|---|
| 99 | |
|---|
| 100 | # EOF |
|---|