| 1 | #!/usr/bin/env python |
|---|
| 2 | # |
|---|
| 3 | # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) |
|---|
| 4 | # Copyright (c) 2012-2016 California Institute of Technology. |
|---|
| 5 | # License: 3-clause BSD. The full license text is available at: |
|---|
| 6 | # - http://mmckerns.github.io/project/mystic/browser/mystic/LICENSE |
|---|
| 7 | |
|---|
| 8 | ####################################################################### |
|---|
| 9 | # scaling and mpi info; also optimizer configuration parameters |
|---|
| 10 | # hard-wired: use DE solver, don't use mpi, F-F' calculation |
|---|
| 11 | ####################################################################### |
|---|
| 12 | scale = 1.0 |
|---|
| 13 | #XXX: <mpi config goes here> |
|---|
| 14 | |
|---|
| 15 | npop = 20 |
|---|
| 16 | maxiter = 1000 |
|---|
| 17 | maxfun = 1e+6 |
|---|
| 18 | convergence_tol = 1e-4 |
|---|
| 19 | crossover = 0.9 |
|---|
| 20 | percent_change = 0.9 |
|---|
| 21 | |
|---|
| 22 | |
|---|
| 23 | ####################################################################### |
|---|
| 24 | # the model function |
|---|
| 25 | ####################################################################### |
|---|
| 26 | from surrogate import marc_surr as model |
|---|
| 27 | from surrogate import ballistic_limit as limit |
|---|
| 28 | |
|---|
| 29 | |
|---|
| 30 | ####################################################################### |
|---|
| 31 | # the subdiameter calculation |
|---|
| 32 | ####################################################################### |
|---|
| 33 | def costFactory(i): |
|---|
| 34 | """a cost factory for the cost function""" |
|---|
| 35 | |
|---|
| 36 | def cost(rv): |
|---|
| 37 | """compute the diameter as a calculation of cost |
|---|
| 38 | |
|---|
| 39 | Input: |
|---|
| 40 | - rv -- 1-d array of model parameters |
|---|
| 41 | |
|---|
| 42 | Output: |
|---|
| 43 | - diameter -- scale * | F(x) - F(x')|**2 |
|---|
| 44 | """ |
|---|
| 45 | |
|---|
| 46 | # prepare x and xprime |
|---|
| 47 | params = rv[:-1] #XXX: assumes Xi' is at rv[-1] |
|---|
| 48 | params_prime = rv[:i]+rv[-1:]+rv[i+1:-1] #XXX: assumes Xi' is at rv[-1] |
|---|
| 49 | |
|---|
| 50 | # get the F(x) response |
|---|
| 51 | Fx = model(params) |
|---|
| 52 | |
|---|
| 53 | # get the F(x') response |
|---|
| 54 | Fxp = model(params_prime) |
|---|
| 55 | |
|---|
| 56 | # compute diameter |
|---|
| 57 | return -scale * (Fx - Fxp)**2 |
|---|
| 58 | |
|---|
| 59 | return cost |
|---|
| 60 | |
|---|
| 61 | |
|---|
| 62 | ####################################################################### |
|---|
| 63 | # the differential evolution optimizer |
|---|
| 64 | ####################################################################### |
|---|
| 65 | def optimize(cost,lb,ub): |
|---|
| 66 | from mystic.solvers import DifferentialEvolutionSolver2 |
|---|
| 67 | from mystic.termination import CandidateRelativeTolerance as CRT |
|---|
| 68 | from mystic.strategy import Best1Exp |
|---|
| 69 | from mystic.monitors import VerboseMonitor, Monitor |
|---|
| 70 | from mystic.tools import getch, random_seed |
|---|
| 71 | |
|---|
| 72 | random_seed(123) |
|---|
| 73 | |
|---|
| 74 | #stepmon = VerboseMonitor(100) |
|---|
| 75 | #stepmon = Monitor() |
|---|
| 76 | from timer import TimedMonitor |
|---|
| 77 | stepmon = TimedMonitor() |
|---|
| 78 | stepmon.timer.stamp = False |
|---|
| 79 | evalmon = Monitor() |
|---|
| 80 | |
|---|
| 81 | ndim = len(lb) # [(1 + RVend) - RVstart] + 1 |
|---|
| 82 | |
|---|
| 83 | solver = DifferentialEvolutionSolver2(ndim,npop) |
|---|
| 84 | solver.SetRandomInitialPoints(min=lb,max=ub) |
|---|
| 85 | solver.SetStrictRanges(min=lb,max=ub) |
|---|
| 86 | solver.SetEvaluationLimits(maxiter,maxfun) |
|---|
| 87 | solver.SetEvaluationMonitor(evalmon) |
|---|
| 88 | solver.SetGenerationMonitor(stepmon) |
|---|
| 89 | |
|---|
| 90 | tol = convergence_tol |
|---|
| 91 | solver.Solve(cost,termination=CRT(tol,tol),strategy=Best1Exp, \ |
|---|
| 92 | CrossProbability=crossover,ScalingFactor=percent_change) |
|---|
| 93 | |
|---|
| 94 | print "solved: %s" % solver.bestSolution |
|---|
| 95 | print "generations: %s" % len(stepmon.x) |
|---|
| 96 | print "time: %s seconds" % stepmon.timer._t |
|---|
| 97 | print "-"*70 |
|---|
| 98 | diameter_squared = -solver.bestEnergy / scale #XXX: scale != 0 |
|---|
| 99 | func_evals = solver.evaluations |
|---|
| 100 | return diameter_squared, func_evals |
|---|
| 101 | |
|---|
| 102 | |
|---|
| 103 | ####################################################################### |
|---|
| 104 | # loop over model parameters to calculate concentration of measure |
|---|
| 105 | ####################################################################### |
|---|
| 106 | def UQ(start,end,lower,upper): |
|---|
| 107 | diameters = [] |
|---|
| 108 | function_evaluations = [] |
|---|
| 109 | total_func_evals = 0 |
|---|
| 110 | total_diameter = 0.0 |
|---|
| 111 | |
|---|
| 112 | for i in range(start,end+1): |
|---|
| 113 | lb = lower + [lower[i]] |
|---|
| 114 | ub = upper + [upper[i]] |
|---|
| 115 | |
|---|
| 116 | #construct cost function and run optimizer |
|---|
| 117 | cost = costFactory(i) |
|---|
| 118 | subdiameter, func_evals = optimize(cost,lb,ub) #XXX: no initial conditions |
|---|
| 119 | |
|---|
| 120 | function_evaluations.append(func_evals) |
|---|
| 121 | diameters.append(subdiameter) |
|---|
| 122 | |
|---|
| 123 | total_func_evals += function_evaluations[-1] |
|---|
| 124 | total_diameter += diameters[-1] |
|---|
| 125 | |
|---|
| 126 | print "subdiameters (squared): %s" % diameters |
|---|
| 127 | print "diameter (squared): %s" % total_diameter |
|---|
| 128 | print "func_evals: %s => %s" % (function_evaluations, total_func_evals) |
|---|
| 129 | |
|---|
| 130 | return total_diameter |
|---|
| 131 | |
|---|
| 132 | |
|---|
| 133 | ####################################################################### |
|---|
| 134 | # rank, bounds, and restart information |
|---|
| 135 | ####################################################################### |
|---|
| 136 | if __name__ == '__main__': |
|---|
| 137 | from math import sqrt |
|---|
| 138 | |
|---|
| 139 | function_name = "marc_surr" |
|---|
| 140 | lower_bounds = [60.0, 0.0, 2.1] |
|---|
| 141 | upper_bounds = [105.0, 30.0, 2.8] |
|---|
| 142 | # h = thickness = [60,105] |
|---|
| 143 | # a = obliquity = [0,30] |
|---|
| 144 | # v = speed = [2.1,2.8] |
|---|
| 145 | |
|---|
| 146 | RVstart = 0; RVend = 2 |
|---|
| 147 | RVmax = len(lower_bounds) - 1 |
|---|
| 148 | |
|---|
| 149 | # when not a random variable, set the value to the lower bound |
|---|
| 150 | for i in range(0,RVstart): |
|---|
| 151 | upper_bounds[i] = lower_bounds[i] |
|---|
| 152 | for i in range(RVend+1,RVmax+1): |
|---|
| 153 | upper_bounds[i] = lower_bounds[i] |
|---|
| 154 | |
|---|
| 155 | lbounds = lower_bounds[RVstart:1+RVend] |
|---|
| 156 | ubounds = upper_bounds[RVstart:1+RVend] |
|---|
| 157 | |
|---|
| 158 | print "...SETTINGS..." |
|---|
| 159 | print "npop = %s" % npop |
|---|
| 160 | print "maxiter = %s" % maxiter |
|---|
| 161 | print "maxfun = %s" % maxfun |
|---|
| 162 | print "convergence_tol = %s" % convergence_tol |
|---|
| 163 | print "crossover = %s" % crossover |
|---|
| 164 | print "percent_change = %s" % percent_change |
|---|
| 165 | print "..............\n\n" |
|---|
| 166 | |
|---|
| 167 | print " model: f(x) = %s(x)" % function_name |
|---|
| 168 | param_string = "[" |
|---|
| 169 | for i in range(RVmax+1): |
|---|
| 170 | param_string += "'x%s'" % str(i+1) |
|---|
| 171 | if i == (RVmax): |
|---|
| 172 | param_string += "]" |
|---|
| 173 | else: |
|---|
| 174 | param_string += ", " |
|---|
| 175 | |
|---|
| 176 | print " parameters: %s" % param_string |
|---|
| 177 | print " varying 'xi', with i = %s" % range(RVstart+1,RVend+2) |
|---|
| 178 | print " lower bounds: %s" % lower_bounds |
|---|
| 179 | print " upper bounds: %s" % upper_bounds |
|---|
| 180 | # print " ..." |
|---|
| 181 | try: model.load() |
|---|
| 182 | except: pass |
|---|
| 183 | diameter = UQ(RVstart,RVend,lower_bounds,upper_bounds) |
|---|
| 184 | try: model.dump() |
|---|
| 185 | except: pass |
|---|
| 186 | try: print model.info() |
|---|
| 187 | except: pass |
|---|
| 188 | |
|---|
| 189 | # EOF |
|---|