| 1 | ##################################################################### |
|---|
| 2 | # M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis, |
|---|
| 3 | # "Building a framework for predictive science", Proceedings of |
|---|
| 4 | # the 10th Python in Science Conference, (submitted 2011). |
|---|
| 5 | ##################################################################### |
|---|
| 6 | |
|---|
| 7 | # the function to be minimized and initial values |
|---|
| 8 | from mystic.models import rosen as my_model |
|---|
| 9 | x0 = [0.8, 1.2, 0.7] |
|---|
| 10 | |
|---|
| 11 | # configure the solver and obtain the solution |
|---|
| 12 | from mystic.solvers import fmin |
|---|
| 13 | solution = fmin(my_model, x0) |
|---|
| 14 | |
|---|
| 15 | ##################################################################### |
|---|
| 16 | |
|---|
| 17 | # the function to be minimized and initial values |
|---|
| 18 | from mystic.models import rosen as my_model |
|---|
| 19 | x0 = [0.8, 1.2, 0.7] |
|---|
| 20 | |
|---|
| 21 | # get monitor and termination condition objects |
|---|
| 22 | from mystic.monitors import Monitor, VerboseMonitor |
|---|
| 23 | stepmon = VerboseMonitor(5) |
|---|
| 24 | evalmon = Monitor() |
|---|
| 25 | from mystic.termination import ChangeOverGeneration |
|---|
| 26 | COG = ChangeOverGeneration() |
|---|
| 27 | |
|---|
| 28 | # instantiate and configure the solver |
|---|
| 29 | from mystic.solvers import NelderMeadSimplexSolver |
|---|
| 30 | solver = NelderMeadSimplexSolver(len(x0)) |
|---|
| 31 | solver.SetInitialPoints(x0) |
|---|
| 32 | solver.SetGenerationMonitor(stepmon) |
|---|
| 33 | solver.SetEvaluationMonitor(evalmon) |
|---|
| 34 | solver.Solve(my_model, COG) |
|---|
| 35 | |
|---|
| 36 | # obtain the solution |
|---|
| 37 | solution = solver.bestSolution |
|---|
| 38 | |
|---|
| 39 | # obtain diagnostic information |
|---|
| 40 | function_evals = solver.evaluations |
|---|
| 41 | iterations = solver.generations |
|---|
| 42 | cost = solver.bestEnergy |
|---|
| 43 | |
|---|
| 44 | # modify the solver configuration, and continue |
|---|
| 45 | COG = ChangeOverGeneration(tolerance=1e-8) |
|---|
| 46 | solver.Solve(my_model, COG) |
|---|
| 47 | |
|---|
| 48 | # obtain the new solution |
|---|
| 49 | solution = solver.bestSolution |
|---|
| 50 | |
|---|
| 51 | ##################################################################### |
|---|
| 52 | |
|---|
| 53 | # a user-provided constraints function |
|---|
| 54 | def constrain(x): |
|---|
| 55 | x[1] = x[0] |
|---|
| 56 | return x |
|---|
| 57 | |
|---|
| 58 | # the function to be minimized and the bounds |
|---|
| 59 | from mystic.models import rosen as my_model |
|---|
| 60 | lb = [0.0, 0.0, 0.0] |
|---|
| 61 | ub = [2.0, 2.0, 2.0] |
|---|
| 62 | |
|---|
| 63 | # get termination condition object |
|---|
| 64 | from mystic.termination import ChangeOverGeneration |
|---|
| 65 | COG = ChangeOverGeneration() |
|---|
| 66 | |
|---|
| 67 | # instantiate and configure the solver |
|---|
| 68 | from mystic.solvers import NelderMeadSimplexSolver |
|---|
| 69 | solver = NelderMeadSimplexSolver(len(x0)) |
|---|
| 70 | solver.SetRandomInitialPoints(lb, ub) |
|---|
| 71 | solver.SetStrictRanges(lb, ub) |
|---|
| 72 | solver.SetConstraints(constrain) |
|---|
| 73 | solver.Solve(my_model, COG) |
|---|
| 74 | |
|---|
| 75 | # obtain the solution |
|---|
| 76 | solution = solver.bestSolution |
|---|
| 77 | |
|---|
| 78 | ##################################################################### |
|---|
| 79 | |
|---|
| 80 | # a user-provided constraints function |
|---|
| 81 | constraints = """ |
|---|
| 82 | x2 = x1 |
|---|
| 83 | """ |
|---|
| 84 | from mystic.constraints import parse |
|---|
| 85 | constrain = parse(constraints) |
|---|
| 86 | |
|---|
| 87 | ##################################################################### |
|---|
| 88 | |
|---|
| 89 | # generate a model from a stock 'model factory' |
|---|
| 90 | from mystic.models.lorentzian import Lorentzian |
|---|
| 91 | lorentz = Lorentzian(coeffs) |
|---|
| 92 | |
|---|
| 93 | # evaluate the model |
|---|
| 94 | y = lorentz(x) |
|---|
| 95 | |
|---|
| 96 | ##################################################################### |
|---|
| 97 | |
|---|
| 98 | # a user-provided model function |
|---|
| 99 | def identify(x) |
|---|
| 100 | return x |
|---|
| 101 | |
|---|
| 102 | # add pathos infrastructure (included in mystic) |
|---|
| 103 | from mystic.tools import modelFactory, Monitor |
|---|
| 104 | evalmon = Monitor() |
|---|
| 105 | my_model = modelFactory(identify, monitor=evalmon) |
|---|
| 106 | |
|---|
| 107 | # evaluate the model |
|---|
| 108 | y = my_model(x) |
|---|
| 109 | |
|---|
| 110 | # evaluate the model with a map function |
|---|
| 111 | from mystic.tools import PythonMap |
|---|
| 112 | my_map = PythonMap() |
|---|
| 113 | z = my_map(my_model, range(10)) |
|---|
| 114 | |
|---|
| 115 | ##################################################################### |
|---|
| 116 | |
|---|
| 117 | # a user-provided model function |
|---|
| 118 | def identify(x) |
|---|
| 119 | return x |
|---|
| 120 | |
|---|
| 121 | # cast the model as a distributed service |
|---|
| 122 | from pathos.servers import sshServer |
|---|
| 123 | id = 'foo.caltech.edu:50000:spike42' |
|---|
| 124 | my_proxy = sshServer(identify, server=id) |
|---|
| 125 | |
|---|
| 126 | # evaluate the model via proxy |
|---|
| 127 | y = my_proxy(x) |
|---|
| 128 | |
|---|
| 129 | ##################################################################### |
|---|
| 130 | |
|---|
| 131 | # a user-provided model function |
|---|
| 132 | def identify(x) |
|---|
| 133 | return x |
|---|
| 134 | |
|---|
| 135 | # select and configure a parallel map |
|---|
| 136 | from pathos.maps import ipcPool |
|---|
| 137 | my_map = ipcPool(2, servers=['foo.caltech.edu']) |
|---|
| 138 | |
|---|
| 139 | # evaluate the model in parallel |
|---|
| 140 | z = my_map(identify, range(10)) |
|---|
| 141 | |
|---|
| 142 | ##################################################################### |
|---|
| 143 | |
|---|
| 144 | # configure and build map |
|---|
| 145 | from pathos.launchers import ipc |
|---|
| 146 | from pathos.strategies import pool |
|---|
| 147 | from pathos.tools import mapFactory |
|---|
| 148 | my_map = mapFactory(launcher=ipc, strategy=pool) |
|---|
| 149 | |
|---|
| 150 | ##################################################################### |
|---|
| 151 | |
|---|
| 152 | # establish a tunnel |
|---|
| 153 | from pathos.tunnel import sshTunnel |
|---|
| 154 | uid = 'foo.caltech.edu:12345:tunnel69' |
|---|
| 155 | tunnel_proxy = sshTunnel(uid) |
|---|
| 156 | |
|---|
| 157 | # inspect the ports |
|---|
| 158 | localport = tunnel_proxy.lport |
|---|
| 159 | remoteport = tunnel_proxy.rport |
|---|
| 160 | |
|---|
| 161 | # a user-provided model function |
|---|
| 162 | def identify(x) |
|---|
| 163 | return x |
|---|
| 164 | |
|---|
| 165 | # cast the model as a distributed service |
|---|
| 166 | from pathos.servers import ipcServer |
|---|
| 167 | id = 'localhost:%s:bug01' % localport |
|---|
| 168 | my_proxy = ipcServer(identify, server=id) |
|---|
| 169 | |
|---|
| 170 | # evaluate the model via tunneled proxy |
|---|
| 171 | y = my_proxy(x) |
|---|
| 172 | |
|---|
| 173 | # disconnect the tunnel |
|---|
| 174 | tunnel_proxy.disconnect() |
|---|
| 175 | |
|---|
| 176 | ##################################################################### |
|---|
| 177 | |
|---|
| 178 | # configure and build map |
|---|
| 179 | from pyina.launchers import mpirun |
|---|
| 180 | from pyina.strategies import carddealer as card |
|---|
| 181 | from pyina.tools import mapFactory |
|---|
| 182 | my_map = mapFactory(4, launcher=mpirun, strategy=card) |
|---|
| 183 | |
|---|
| 184 | ##################################################################### |
|---|
| 185 | |
|---|
| 186 | # the function to be minimized and the bounds |
|---|
| 187 | from mystic.models import rosen as my_model |
|---|
| 188 | lb = [0.0, 0.0, 0.0] |
|---|
| 189 | ub = [2.0, 2.0, 2.0] |
|---|
| 190 | |
|---|
| 191 | # get termination condition object |
|---|
| 192 | from mystic.termination import ChangeOverGeneration |
|---|
| 193 | COG = ChangeOverGeneration() |
|---|
| 194 | |
|---|
| 195 | # select the parallel launch configuration |
|---|
| 196 | from pyina.maps import MpirunCarddealer |
|---|
| 197 | my_map = MpirunCarddealer(4) |
|---|
| 198 | |
|---|
| 199 | # instantiate and configure the solver |
|---|
| 200 | from mystic.solvers import DifferentialEvolutionSolver |
|---|
| 201 | solver = DifferentialEvolutionSolver(len(lb), 20) |
|---|
| 202 | solver.SetRandomInitialPoints(lb, ub) |
|---|
| 203 | solver.SetStrictRanges(lb, ub) |
|---|
| 204 | solver.SetEvaluationMap(my_map) |
|---|
| 205 | solver.Solve(my_model, COG) |
|---|
| 206 | |
|---|
| 207 | # obtain the solution |
|---|
| 208 | solution = solver.bestSolution |
|---|
| 209 | |
|---|
| 210 | ##################################################################### |
|---|
| 211 | |
|---|
| 212 | # the function to be minimized and the bounds |
|---|
| 213 | from mystic.models import rosen as my_model |
|---|
| 214 | lb = [0.0, 0.0, 0.0] |
|---|
| 215 | ub = [2.0, 2.0, 2.0] |
|---|
| 216 | |
|---|
| 217 | # get monitor and termination condition objects |
|---|
| 218 | from mystic.monitors import LoggingMonitor |
|---|
| 219 | stepmon = LoggingMonitor(1, âlog.txtâ) |
|---|
| 220 | from mystic.termination import ChangeOverGeneration |
|---|
| 221 | COG = ChangeOverGeneration() |
|---|
| 222 | |
|---|
| 223 | # select the parallel launch configuration |
|---|
| 224 | from pyina.maps import TorqueMpirunCarddealer |
|---|
| 225 | my_map = TorqueMpirunCarddealer(â5:ppn=4â) |
|---|
| 226 | |
|---|
| 227 | # instantiate and configure the nested solver |
|---|
| 228 | from mystic.solvers import PowellDirectionalSolver |
|---|
| 229 | my_solver = PowellDirectionalSolver(len(lb)) |
|---|
| 230 | my_solver.SetStrictRanges(lb, ub) |
|---|
| 231 | my_solver.SetEvaluationLimits(50) |
|---|
| 232 | |
|---|
| 233 | # instantiate and configure the outer solver |
|---|
| 234 | from mystic.solvers import BuckshotSolver |
|---|
| 235 | solver = BuckshotSolver(len(lb), 20) |
|---|
| 236 | solver.SetRandomInitialPoints(lb, ub) |
|---|
| 237 | solver.SetGenerationMonitor(stepmon) |
|---|
| 238 | solver.SetNestedSolver(my_solver) |
|---|
| 239 | solver.SetSolverMap(my_map) |
|---|
| 240 | solver.Solve(my_model, COG) |
|---|
| 241 | |
|---|
| 242 | # obtain the solution |
|---|
| 243 | solution = solver.bestSolution |
|---|
| 244 | |
|---|
| 245 | ##################################################################### |
|---|
| 246 | |
|---|
| 247 | # prepare a (F(X) - G)**2 a metric |
|---|
| 248 | def costFactory(my_model, my_data): |
|---|
| 249 | def cost(param): |
|---|
| 250 | |
|---|
| 251 | # compute the cost |
|---|
| 252 | return ( my_model(param) - my_data )**2 |
|---|
| 253 | |
|---|
| 254 | return cost |
|---|
| 255 | |
|---|
| 256 | ##################################################################### |
|---|
| 257 | ''' |
|---|
| 258 | The calculation of the diameter is performed as a nested |
|---|
| 259 | optimization, as shown above for the BuckshotSolver. Each |
|---|
| 260 | inner optimization is a calculation of a component |
|---|
| 261 | suboscillation, using the a global optimizer |
|---|
| 262 | (such as DifferentialEvolutionSolver) and the cost |
|---|
| 263 | metric shown above. |
|---|
| 264 | ''' |
|---|
| 265 | |
|---|
| 266 | # prepare a (F(X) - F(X'))**2 cost metric |
|---|
| 267 | def suboscillationFactory(my_model, i): |
|---|
| 268 | def cost(param): |
|---|
| 269 | |
|---|
| 270 | # get X and X' (Xi' is appended to X at param[-1]) |
|---|
| 271 | x = param[:-1] |
|---|
| 272 | x_prime = param[:i] + param[-1:] + param[i+1:-1] |
|---|
| 273 | |
|---|
| 274 | # compute the suboscillation |
|---|
| 275 | return -( my_model(x) - my_model(x_prime) )**2 |
|---|
| 276 | |
|---|
| 277 | return cost |
|---|
| 278 | |
|---|
| 279 | ##################################################################### |
|---|
| 280 | ''' |
|---|
| 281 | Global optimizations used in solving OUQ problems are |
|---|
| 282 | composed in the same manner as shown above for the |
|---|
| 283 | DifferentialEvolutionSolver. |
|---|
| 284 | ''' |
|---|
| 285 | |
|---|
| 286 | # OUQ requires bounds in a very specific form... |
|---|
| 287 | # param = [wxi]*nx + [xi]*nx + [wyi]*ny + [yi]*ny + [wzi]*nz + [zi]*nz |
|---|
| 288 | npts = (nx,ny,nz) |
|---|
| 289 | lb = (nx * w_lower) + (nx * x_lower) \ |
|---|
| 290 | + (ny * w_lower) + (ny * y_lower) \ |
|---|
| 291 | + (nz * w_lower) + (nz * z_lower) |
|---|
| 292 | ub = (nx * w_upper) + (nx * x_upper) \ |
|---|
| 293 | + (ny * w_upper) + (ny * y_upper) \ |
|---|
| 294 | + (nz * w_upper) + (nz * z_upper) |
|---|
| 295 | |
|---|
| 296 | from mystic.math.measures import split_param |
|---|
| 297 | from mystic.math.dirac_measure import product_measure |
|---|
| 298 | from mystic.math import almostEqual |
|---|
| 299 | |
|---|
| 300 | # split bounds into weight-only & sample-only |
|---|
| 301 | w_lb, m_lb = split_param(lb, npts) |
|---|
| 302 | w_ub, m_ub = split_param(ub, npts) |
|---|
| 303 | |
|---|
| 304 | # generate constraints function |
|---|
| 305 | def constraints(param): |
|---|
| 306 | prodmeasure = product_measure() |
|---|
| 307 | prodmeasure.load(param, npts) |
|---|
| 308 | |
|---|
| 309 | # impose norm on measures |
|---|
| 310 | for measure in prodmeasure: |
|---|
| 311 | if not almostEqual(float(measure.mass), 1.0): |
|---|
| 312 | measure.normalize() |
|---|
| 313 | |
|---|
| 314 | # impose expectation on product measure |
|---|
| 315 | E = float(prodmeasure.get_expect(my_model)) |
|---|
| 316 | if not (E <= float(target_mean + error)) \ |
|---|
| 317 | or not (float(target_mean - error) <= E): |
|---|
| 318 | prodmeasure.set_expect((target_mean, error), my_model, (m_lb, m_ub)) |
|---|
| 319 | |
|---|
| 320 | # extract weights and positions |
|---|
| 321 | return prodmeasure.flatten() |
|---|
| 322 | |
|---|
| 323 | # generate maximizing function |
|---|
| 324 | def cost(param): |
|---|
| 325 | prodmeasure = product_measure() |
|---|
| 326 | prodmeasure.load(param, npts) |
|---|
| 327 | return MINMAX * prodmeasure.pof(my_model) |
|---|
| 328 | |
|---|
| 329 | ##################################################################### |
|---|
| 330 | """ |
|---|
| 331 | DIRECT: |
|---|
| 332 | * Add more python optimizers: scipy, OpenOpt, PARK (snobfit) |
|---|
| 333 | * Allow for derivative and gradient capture -> use Sow? |
|---|
| 334 | * get "handler" to work in parallel |
|---|
| 335 | * Better 'programmatic' interface for handler |
|---|
| 336 | * Add more options to handler (i.e. toggle_verbosity?, get_cost?, ...?) |
|---|
| 337 | * Allow sigint_callback to take a list (i.e. provide call[i]) |
|---|
| 338 | * Add "constraints" to models (design similar to pyre.inventory and validators) |
|---|
| 339 | |
|---|
| 340 | INDIRECT: |
|---|
| 341 | * Build a failure test suite, and a proper test suite |
|---|
| 342 | * Try one of the VTF apps... or Sean's "cain" library |
|---|
| 343 | |
|---|
| 344 | REFERENCE: |
|---|
| 345 | * Look at PARK's rangemap.py for bounds and range mapping |
|---|
| 346 | * Look at PARK's parameter.py, deps.py, expression.py, & assembly.py |
|---|
| 347 | * <-- Find OpenOpt's model & optimizer API --> |
|---|
| 348 | * <-- Find DAKOTA's model & optimizer API --> |
|---|
| 349 | """ |
|---|